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Perturbative solution for the generalised anharmonic 
oscillators? 
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Istituto di Fisica dell’universita, Ferrara, Italia 

Received 22 July 1983 

Abstract. Serious difficulties have been encountered in the past when attempting the 
straightforward application of the Borel method to the summation of perturbation series 
in quantum mechanics and quantum field theory because of an analytic continuation of 
the Borel transform series which is usually performed by means of conformal mapping 
techniques. In this paper we show that this continuation may be accomplished by combining 
the Borel method with the first confluent form of the E algorithm of Wynn: for the 
calculation of the ground state energy eigenvalue of the generalised anharmonic oscillators, 
two different approaches are presented, both of which lead to accurate results. 

1. Introduction 

The quantum mechanical problem of the generalised anharmonic oscillators, described 
in the one-dimensional case by the Hamiltonian 

H = p 2 +  x2+  p x 2 m  ( m = 2 , 3 ,  . . .) ,  (1.1) 

continues to attract an appreciable amount of interest. This is due to the analogy 
between this model and one-dimensional quantum field theories, both of which yield 
divergent perturbation expansions. Furthermore, anharmonic oscillators are also 
directly relevant to the study of various atomic and molecular problems of quantum 
chemistry. Several approximation methods have consequently been used to calculate 
eigenvalues and eigenvectors of the Hamiltonian (1.1): among these we may recall 
WKB methods (Kesarwani and Varshni 1981, 1982), the Rayleigh-Ritz variational 
method (Graffi and Grecchi 1973, Mitra 1977, Castro et a1 1983), Hill’s determinant 
(Biswas et a1 1971, 1973, Hautot and Magnus 1979, Banerjee 1976, 1978, Banerjee 
et a1 1978) and, above all, perturbation techniques (Reed and Simon 1978). 

In what follows we shall be chiefly interested in the Rayleigh-Schrodinger perturba- 
tion expansion in powers of the coupling constant p, for the ground state energy of 
the Hamiltonian (1.1). The main reason for considering perturbative solutions to the 
Schrodinger equation arises from the consideration that, in quantum field theory, 
perturbation series are often the only practical tool available for obtaining an approxi- 
mate solution of the problem in hand. This is because in many cases of practical 
interest it is difficult, if not impossible, to calculate the matrix elements of the operators 
required for performing a variational or other non-perturbative calculation. 

t This research has received support from MPI contributions. 

0305-4470/84/030547+ 11$02.25 0 1984 The Institute of Physics 547 



548 M F Marziani 

The most widely used way to overcome the divergence of perturbative expansions 
is to resort to a resummation of the series using one of a few well known methods. 
In the case of the anharmonic oscillators, among these techniques we recall some 
nonlinear summation procedures, such as Pad6 approximants (Loeff el et a1 1969, 
Simon 1970, Iafrate and Osche 1972), the repeated application of Aitken’s A2 process 
(Van Dyke 1974, Drummond 1981), continued fractions (Reid 1967, &ek and Vrscay 
1982), the generalised Euler transformation (Gunson and Ng 1972, Bhattacharyya 
1982), Levin’s approximants and Brezinski’s 4 algorithm (Ford and Smith 1982). On 
the other hand, all these methods possess a limited range of applicability: for example, 
it has been rigorously proved (Graffi and Grecchi 1978) that the Pad6 approximants 
do not converge to the eigenvalues of (1.1) for m Z 4 .  

In most cases one may resort to another summation procedure, the Borel summabil- 
ity method (Reed and Simon 1978, Hardy 1949), which is linear and whose convergence 
to the eigenvalues of (1.1) has been demonstrated (Graffi et a1 1970) for arbitrary m. 
However, the Borel summability method does not readily lend itself to straightforward 
numerical application because it involves an analytic continuation, and also because 
the strong divergence of the coefficients in the Rayleigh-Schrodinger expansion soon 
makes the calculations too cumbersome. To circumvent the first complication, in the 
early experiments with the Borel method the analytic continuation was attempted by 
combining Borel summation with Pad6 approximants (Graffi et a1 1970,1971): though 
this procedure has subsequently received considerable attention and application to 
quantum mechanics and field theory (Bonnier 1978, Eletskii and Popov 1978a, b, 
Leinaas and Osnes 1980, Popov and Weinberg 1982), it does not seem a priori to be 
completely justifiable. 

The aim of this paper is to apply a recently proposed (Lovitch and Marziani 1983) 
combination of the Borel summability method with the first confluent form of the E 

algorithm of Wynn (1960a, b), to calculate the ground state of (1.1). In § 2 we briefly 
review the main theoretical aspects of the anharmonic oscillators and give some results 
about the Borel summability of the Rayleigh-Schrodinger energy series; in § 3 we 
survey the properties of the first confluent form of the E algorithm and its combination 
with the Borel method. Finally, in 9 4 we present our numerical results as well as our 
conclusions. 

2. Generalised anharmonic oscillators 

We shall consider the one-dimensional Schrodinger equation 

H $ ( x )  = W x )  

where the Hamiltonian H is 

H = -d2/dX2 + X’ + p x Z m  ( m  = 2 , 3 , .  . .) 
with the conditions 

x E (-CO, +CO), 

lim $ ( x )  =0,  
x-*cc 

p > 0. 



Perturbative solution for anharmonic oscillators 549 

It is well known that the ground state energy of the Hamiltonian (2.2) can be calculated 
by means of perturbation theory (Reed and Simon 1978): in fact, anharmonic oscillators 
are discussed in many standard quantum mechanics textbooks (Landau and Lifshitz 
1958, Davydov 1965) as a simple example of the application of perturbation theory. 
In this context the ground state energy Eo of (2.2) may be expanded in powers of the 
coupling constant p :  

OCI 

Eo(@) = C n  anPfl, (2.6) 

which is known as the Rayleigh-Schrodinger series. Unfortunately, the series (2.6) is 
not convergent but only asymptotic (Simon 1970) to the true eigenvalue Eo(/3): in 
fact, it has been shown (Bender and Wu 1971, 1973) that the coefficients a ,  in (2.6) 
diverge factorially according to the estimate 

0 

a, O [ T ( m n - n + l ) ] .  
n-00 

(2.7) 

For example, in the case of the quartic anharmonic oscillator ( m  = 2) it has been 
proved (Bender and Wu 1973) that a, possesses the asymptotic behaviour 

n + l  1 / 2  a ,  = [(-1) 6 / ~ ~ / * ] ( $ ) " r ( n + ; ) .  
n - a  

From (2.8) it is easy to see that the corresponding series (2.6) has zero radius of 
convergence. In addition, it suggests the use of Borel summability which consists in 
recovering Eo(/3) from the series (2.6) through the integral 

Application of (2.9) to the calculation of Eo@) is justified by the following arguments: 
(i) series (2.6) has been proved (Graffi et a1 1970) to be a strong asymptotic series 

(Reed and Simon 1978); 
(ii) it therefore satisfies the conditions of the Watson-Nevanlinna theorem 

(Sokall980). 
Let us consider, for simplicity, the quartic anharmonic oscillator and defiqe the 

Borel transform of the series (2.6) to be the expression in braces in (2.9), i.e. 

(2.10) 

Then, by virtue of the Watson-Nevanlinna theorem, it follows that: 
(i) B(x)  is analytic in a neighbourhood of x = 0; 
(ii) B ( x )  possesses an analytic continuation in a neighbourhood of the real semi-axis 

(iii) the inverse Borel transform, defined to be the integral (2.9), is convergent 
and yields a unique formal sum for the original series (2.6). 

As we have already pointed out, the application of the Borel method, through the 
integral (2.9), is not straightforward. In fact, in order to perform the integration over 
the semi-infinite interval, one needs to know the sum of the Borel transform series 
B(px) for every real value of x. But, as one can easily see from (2.8), the Borel series 

[O, a); 
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H(kn' ( t )  = 

(2.10) has a finite radius of convergence pe: indeed, a simple calculation shows that 

(3.4) * . .  
( t )  S ( n + k - l )  ( t )  S ( n + k ) ( t )  , . . s ( n + 2 k - 2 )  

(2.11) 

for the quartic anharmonic oscillator. Some procedure of analytic continuation is 
therefore required. Besides the aforementioned combination (Graffi et a1 1970, 1971) 
of the Borel method with Pad6 approximants (Baker 1975), other continuation tech- 
niques have been used in the past, which are all based on conformal mapping (Le 
Guillou and Zinn-Justin 1977, Parisi 1977, Sobelman 1979, Zinn-Justin 1981, Hirs- 
brunner 1982); various choices of the conformal transformation are possible (Hirsbrun- 
ner 1982) and these generally lead to quite different results, with respect to relative 
errors, rate of convergence and so on. 

In 0 3 we shall see that the combination of the first confluent form of the E algorithm 
of Wynn (1960a, b) with the Borel method provides another way for analytically 
continuing the Borel transform series (2.10) outside its circle of convergence. 

3. First confluent form of the E algorithm 

In order to evaluate the inverse Borel transform 

Eo@) = loe e-"B(px) dx = lim e-"B(px) dx = r-m lim S ( t ;  p ) ,  
r+m lor (3.1) 

we make use of a 'continuous prediction' method (Brezinski 1977), namely, the first 
confluent form of the E algorithm of Wynn (1960a, b). This method applies to the 
calculation of the limit of a complex function S ( t ) ,  continuous and differentiable to 
every order, as t tends to infinity, in terms of the values of S ( t )  and of its derivatives 
for a given value to of t. Taking S ( t )  -- S ( t ;  p )  as given in (3.1), the application of the 
first confluent form of the E algorithm to this function enables one to calculate 

with the additional conditions 

H?' ( t )  = 1, 

s-'(t) = 0, 

S(O'( t )  = S (  t ) .  

The class of functions S (  t )  for which limr+m S (  t )  equals the limit of the sequence (3.3) 
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is usually very large (Wynn 1968) and it includes all finite linear combinations of 
products of exponentials and polynomials. The same is also true (Wynn 1968) for 
integrals of such combinations. We can therefore apply the above method to the 
function e-"B(px), since inside its circle of convergence the Borel series B(@x)  can 
be approximated to an arbitrary degree of accuracy by a partial sum. Hence the 
sequence of quotients in (3.3) converges to a finite limit which equals the value of the 
ordinary limit (3.2). 

In practical applications, one can calculate the sequence of approximants sZn( to) 
by means of (3.3) and (3.4): the only restriction in the choice of the arbitrary point 
to is imposed by the fact that the Borel series (2.10) has the finite radius of convergence 
pB, as expressed by (2.11). Thus, in order to calculate the integral 

S (  to) = e-"B(px) dx (3.8) 

and its successive derivatives S(" ) ( to ) ,  one has to choose to such that 

pt0 < P E ;  (3.9) 

in fact, inside the circle of convergence, the Borel series B(px)  converges uniformly 
with its derivatives, which have the same radius of convergence. Therefore one can 
recover the Borel sum (3.1) without explicitly continuing the Borel series outside its 
circle of convergence: no conformal mapping technique is required in this approach. 
The obvious drawback to this procedure, however, derives from the fact that the 
arbitrary parameter to must be decreased correspondingly as the value of the coupling 
constant p increases, as one can argue from (3.9). 

An alternative approach involves the use of a generalised Borel summability method 
in which the Borel transform series converges everywhere. 

In fact, it is known (Simon 1970) that the perturbation series (2.6) for the quartic 
anharmonic oscillator is asymptotic uniformly in any sector 

l a r g p l < h  (3.10) 

of the complex p plane. From this condition it follows (Zinn-Justin 1981) that the 
generalised Borel transform 

is an entire function, i.e. it has an infinite radius of convergence, if the parameter a 
satisfies the condition 

1 < a < 3 .  (3.12) 

Therefore, if we consider, for the quartic anharmonic oscillator, the generalised Borel 
transform of order two, namely 

(3.13) 

then condition (3.12) and the asymptotic formula (2.8) for the Rayleigh-Schrodinger 
coefficients immediately show that B ( z )  in (3.13) is an entire function. Therefore, 
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one can recover the ground state energy from the generalised inverse Borel transform 

(3.14) 

However, one finds in practice that even the generalised Borel transform series (3.13) 
is not easily summed, in spite of its infinite radius of convergence; this is a consequence 
of the fact that the terms of the series are of alternating signs and their absolute values 
are several orders of magnitude larger than the sum of the series. Furthermore, one 
knows only a limited number of coefficients, so that numerical difficulties prevent a 
straightforward summation of the series (3.13). However, one can again make use of 
the first confluent form of the E algorithm combined now with generalised Borel 
summation: the only difference is that we define B ( P x )  as in (3.13) and then proceed 
with the calculations exactly as before. 

Obviously, the latter technique can be readily generalised to more Iapidly diverging 
perturbation series, such as the case of the sextic or octic anharmonic oscillators ( m  = 3 
and m = 4 ,  respectively, in (1.1)). For instance, for the octic oscillator Hamiltonian 

H = p 2 +  x2+  p x 8 ,  (3.15) 

it follows from (2.7) that the coefficients diverge as [(3n)!]; hence, in order to have 
a Borel transform series which converges everywhere, we should choose 

(3.16) 

because now the condition analogous to (3.12) is 

3 < a < 5 .  (3.17) 

Subsequently, one can approximate the inverse Borel transform by means of (3.3)- 
(3.7), choosing for to a value which allows the series (3.16) to be easily summed. 

In 9 4 we shall present some results obtained with the two approaches outlined 
above. 

4. Numerical results 

We shall first consider the calculation of the ground state energy of the quartic 
anharmonic oscillator. The first 75 coefficients of the Rayleigh-Schrodinger perturba- 
tion series (2.6) had been calculated by Bender and Wu (1969), but these were quoted 
only to 12 significant figures. Since our goal was to perform as accurate a calculation 
as possible in order to show the power of the method, we re-computed these coefficients; 
we followed the method of Danforth and Swenson (1972) (see also Caswell 1979), 
which reduces the computation to a straightforward iteration of an algebraic recurrence 
relation: this method has been further modified by Killingbeck (1981) to produce 
renormalised series directly from hypervirial recurrence relations. We evaluated a 
large number (145) of coefficients in the hope of extracting the maximum possible 
information about the eigenvalues. A large number of coefficients is also required in 
the summation process of the Borel transform series and of its derivatives; we used 
double precision arithmetic on a Cyber 7600 computer (29 figures), truncating the 
results to 25 significant figures. 
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Following the first approach outlined in 0 3, we applied the first confluent form of 
the E algorithm to the function S ( t )  of (3.1), where the Borel transform series B(Px)  
is given by (2.10). The successive derivatives of S ( t )  are given by 

where 

Choosing an arbitrary point to subject to the condition (3.9), one can then approximate 
the Borel sum (3.1) by means of the sequence E Z n ( f O )  in (3.3), employing (3.4)-(3.8). 
However, to avoid large round-off errors in the evaluation of the determinants (for 
p = 1 the determinants in the numerator and denominator of (3.3), in the case of the 
twentieth approximant E40(tO), are of the order of 10308 with their ratio approximately 
equal to one), we followed in practice another method. In fact, it can be shown 
(Brezinski 1977) that the application of the first confluent form of the E algorithm to 
the function S ( t )  is equivalent to solving the system of linear equations 

(boS(tO)+blS'(to)+. . .+b,S(")(to)=c 

b,S'( to )  + blS"( t o )  + . . . + b,S("+l)( to )  = 0 
. . .  (4.3) 

where c # 0 is an arbitrary constant, for the unknown bo. The nth approximant can 
then be evaluated as 

EZfl(t0) = c/b,; (4.4) 
actually, (3.3) is just the Cramer rule expression for the solution of the system (4.3). 
For comparison we also evaluated the approximants E Z n (  to) iteratively, making use of 
the recurrence relation (Brezinski 1977) between the Hankel functional determinants 

with the initial conditions 

H g ' ( t ) = l ,  

H p  ( t )  = S'"'( t ) ,  

for n = 0, 1, . . . . The results obtained with the two procedures are in excellent agree- 
ment, to between 22 and 26 significant figures. 

In table 1 we report the ground state energy level of the quartic anharmonic 
oscillator for three values of the coupling constant p ;  the value to that we chose, taking 
into account the restrictions imposed by (3.9), is also presented (we recall that p B  =$; 
see (2.1 1) ) .  In table 2 the rate of convergence of the approximants E Z n ( f O )  is displayed 
for two of the above values of p :  the successive approximations appear to converge 
decreasing monotonically in this range of p ( p  s 1). Obviously, the E Z n ( t O )  converge 
more and more slowly as p increases because of the finite radius of convergence of 
the Borel transform series, as we have already mentioned in 0 3. We may also remark 
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Table 1. Ground state energy eigenvalue of the quartic anharmonic oscillator and the 
value to adopted for the calculation as a function of the coupling constant p. The Borel 
transform series is as in (2.10). 

P E d P )  to 

0.01 1.007 373 672 081 382 460 533 843 9 20 
0.1 1.065 285 509 543 717 688 8 (7) 2 
1 1.392 35 (2)  0.2 

Table 2. Rate of convergence of the approximants ~ ~ ~ ( t , , )  as a function of the order n. 

n E Z n ( r O ) ;  p = E 2 " ( t O ) ;  p = lo-' 

10 

15 

20 

- 

- 

1.007 373 672 081 574 859 81 1 756 2 
1.007 373 672 081 382 523 263 359 6 
1.007 373 672 081 382 460 588 409 1 
1.007 373 672 081 382 460 533 929 9 
1.007 373 672 081 382 460 533 844 1 
1.007 373 672 081 382 460 533 843 9 

1.066 406 050 317 694 789 73 
1.06530614259937273558 
1.065 286 316 155 262 596 80 
1.065 285 557 270 270 955 37 
1.06528551329513489099 
1.065 285 509 907 925 452 79 

1.065 285 509 543 846 692 53 

1.065 285 509 543 717 729 07 

1.065 285 509 543 717 688 87 

- 

- 

that the choice to = 0, which a priori may seem to be very appealing because it requires 
no approximate integration for the evaluation of S ( t o )  (3.8), is not convenient in 
practice. In fact it has already been shown (Marziani 1983) that, with the choice to = 0, 
the sequence of approximations ~ ~ , , ( t ~ )  to the Borel sum (3.1) coincides with the 
sequence of [ n ,  n - 11 Pad6 approximants to the perturbation series (2.6). It is known 
(Graffi and Grecchi 1978) that the Pad6 approximants do not converge to the true 
eigenvalues of a generalised anharmonic oscillator (1.1) when m 3 4: therefore the 
arbitrary parameter to offers a measure of the transition between the convergence and 
non-convergence of our approximation scheme. 

We also applied the second approach outlined in 0 3, namely, we approximated 
the generalised inverse Borel transform (3.14) by means of the first confluent form of 
the E algorithm. In this case the Borel transform (3.13) has an infinite radius of 
convergence, which allows one to choose larger values of to than in the previous case. 
In table 3 we present our results for the ground state level of H = p 2  + x2 + px4, obtained 
with this second procedure, for various values of /3 in the intermediate region, employing 
the first 86 coefficients of the series (2.6); also shown is the value of to which allowed 
the Borel series (3.13) and its derivatives to be easily summed and, at the same time, 
to achieve good convergence. The results displayed in table 3 refer to a calculation 
of 25 approximants E 2 " ( f O ) ;  we may add that, unfortunately, in this case the monotony 
in the convergence pattern is lost. 

In order to check our results we compared them with various accurate perturbative 
calculations of the same eigenvalues, such as those of Hirsbrunner (1982) and Caswell 
(1979), and with the Pad6 (Loeffel et af 1969, Simon 1970) and Borel-Pad6 (Graffi 
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Table 3. Ground state energy eigenvalue of the quartic anharmonic oscillator and the 
value to adopted for the calculation as a function of the coupling constant p. The Borel 
transform series is as in (3.13). 

P Eo(P) ‘0  

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

10 

1.065 285 509 543 717 688 857 09(:) 
1.118 292 654 367 039 153($) 
1.164047 157 353 842 
1.204 810 327 372 501 
1.241 854 059 651 514 
1.275 983 566 342 6(2) 
1.307 748 651 
1.337 545 208 149 
1.365 669 825 788 
1.392 351 641 53(9) 
2.449 17(8) 

12 
9 
8.5 
8 
7.5 
7 
6.5 
6 
5.5 
5 
2 

et ai 1970) results. Our results are in excellent agreement with those obtained in 
these previous calculations, especially with those of Hirsbrunner (1 982) which were 
probably performed with the same number of significant figures as ours. When the 
values that we present in table 1 and table 3 are compared with the results of accurate 
non-perturbative (Biswas et a1 1973, Banerjee 1978) or variational (Graffi and Grecchi 
1973) computations, the situation proves to be less impressive than previously for 
large values of the coupling constant p. However, in any case good or satisfactory 
agreement is achieved depending on the value of p, keeping in mind that our approxima- 
tion scheme is perturbative in nature. 

Finally, we applied the same method to the calculation of the ground level of 
H = p 2  + x 2  + p x 8 ,  which is already a difficult task in a perturbative approach, due to 
the strong divergence of the perturbation series coefficients. In this case we employed 
the Borel transform series (3.16) with the first 43 Rayleigh-Schrodinger coefficients 
which we re-computed, the first 37 of which are in complete agreement with those 
calculated by Graffi et a1 (1971). The results we obtained are presented in table 4 
and they are in good agreement with the ‘exact’ ones. 

In conclusion, we wish to point out that rather than attempt to obtain the most 
accurate tables of eigenvalues of the anharmonic oscillators, our aim was to show that 
the Borel summability method can be made more appealing, also from the computa- 
tional point of view, by combining it with a rapidly converging extrapolation method. 
This basic idea should prove useful when dealing with other summability problems in 
quantum mechanics and quantum field theory. 

Table 4. Ground state energy eigenvalue of the octic anharmonic oscillator and the value 
to adopted for the calculation as a function of the coupling constant p. The Borel transform 
series is as in (3.16). 

P E , @ )  to 

1 x 1 0 - ~  1.000646369874074347 25 
1 x 10-3 1.005 857 514 12 15 
1 x 1.039 496 7 8 
1 x lo-’ 1.168 9(:) 4.5 
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